Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model.

نویسندگان

  • Arvind Kumar
  • Stefan Rotter
  • Ad Aertsen
چکیده

Isolated feedforward networks (FFNs) of spiking neurons have been studied extensively for their ability to propagate transient synchrony and asynchronous firing rates, in the presence of activity independent synaptic background noise (Diesmann et al., 1999; van Rossum et al., 2002). In a biologically realistic scenario, however, the FFN should be embedded in a recurrent network, such that the activity in the FFN and the network activity may dynamically interact. Previously, transient synchrony propagating in an FFN was found to destabilize the dynamics of the embedding network (Mehring et al., 2003). Here, we show that by modeling synapses as conductance transients, rather than current sources, it is possible to embed and propagate transient synchrony in the FFN, without destabilizing the background network dynamics. However, the network activity has a strong impact on the type of activity that can be propagated in the embedded FFN. Global synchrony and high firing rates in the embedding network prohibit the propagation of both, synchronous and asynchronous spiking activity. In contrast, asynchronous low-rate network states support the propagation of both, synchronous spiking and asynchronous, but only low firing rates. In either case, spiking activity tends to synchronize as it propagates, challenging the feasibility to transmit information in asynchronous firing rates. Finally, asynchronous network activity allows to embed more than one FFN, with the amount of cross talk depending on the degree of overlap in the FFNs. This opens the possibility of computational mechanisms using transient synchrony among the activities in multiple FFNs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic noise induces intermittent oscillatory-quiescent state transitions in a spiking network model

Spontaneous cortical population activity is often described as synchronous during slow-wave sleep and under certain anesthetics, and asynchronous during quiet wakefulness. The underlying mechanisms that control transitions between these cortical states are not completely known. To study the effect of synaptic noise on these transitions, we use a cortical network model with mixed neuronal types,...

متن کامل

Emergent bursting and synchrony in computer simulations of neuronal cultures

Experimental studies of neuronal cultures have revealed a wide variety of spiking network activity ranging from sparse, asynchronous firing to distinct, network-wide synchronous bursting. However, the functional mechanisms driving these observed firing patterns are not well understood. In this work, we develop an in silico network of cortical neurons based on known features of similar in vitro ...

متن کامل

Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons

Networks of specific inhibitory interneurons regulate principal cell firing in several forms of neocortical activity. Fast-spiking (FS) interneurons are potently self-inhibited by GABAergic autaptic transmission, allowing them to precisely control their own firing dynamics and timing. Here we show that in FS interneurons, high-frequency trains of action potentials can generate a delayed and pro...

متن کامل

The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model

In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational st...

متن کامل

Effective Suppression of Pathological Synchronization in Cortical Networks by Highly Heterogeneous Distribution of Inhibitory Connections

Even without external random input, cortical networks in vivo sustain asynchronous irregular firing with low firing rate. In addition to detailed balance between excitatory and inhibitory activities, recent theoretical studies have revealed that another feature commonly observed in cortical networks, i.e., long-tailed distribution of excitatory synapses implying coexistence of many weak and a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 20  شماره 

صفحات  -

تاریخ انتشار 2008